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Abstract

We propose a co-regularization based multiview spectral clustering algorithm
which enforces the clusterings across multiple views to agree with each-other.
Since each view can be used to define a similarity graph over the data, our al-
gorithm can also be considered as learning with multiple similarity graphs, or
equivalently with multiple kernels. We propose an objective function that implic-
itly combines two (or more) kernels, and leads to an improved clustering perfor-
mance. Experimental comparisons with a number of baselines on several datasets
establish the efficacy of our proposed approach.

1 Introduction
Many real-world datasets have representations in form of multiple views [4, 5]. For example, web-
pages usually consist of both the page-text and hyperlink information; images on the web have
associated captions with them; in multi-lingual information retrieval, the same document has mul-
tiple representations in different languages, and so on. Although these individual views might be
sufficient on their own for a given learning task, they can often provide complementary information
to each-other which can lead to improved performance on the learning task at hand.

Clustering seeks a partition of the data based on some similarity measure between the examples.
In many cases, we have access to multiple similarity graphs (or kernels), constructed from multiple
views of the data. Although one could use just one similarity graph in some graph based cluster-
ing algorithm [12], it makes more sense to combine the information from the multiple similarity
graphs, and do clustering using the combined representation of similarities. Since the true under-
lying clustering would assign a point to the same cluster irrespective of the similarity graph being
used, we can approach the multiview clustering problem by looking for clusterings that are consis-
tent across the graphs defined over each of the views: corresponding nodes in each graph should
have the same cluster membership. We use views, graphs and kernels interchangeably in the sub-
sequent text. In this paper, we propose a spectral clustering algorithm that attempts to achieve this
goal by co-regularizing the clustering hypotheses across views. We propose a spectral clustering
objective function that implicitly combines multiple kernels to achieve a better clustering. Our ap-
proach is in contrast with several other existing works on multiple kernel learning [6] that try to
learn an optimal kernel matrix, given a number of base kernel matrices. We focus on the two-kernel
case for the simplicity of exposition, but the objective can be extended to more than two kernels in
a straightforward manner.

2 Spectral Clustering
Spectral clustering [12] is a technique that exploits the properties of the Laplacian of the graph whose
edges denote the similarities between the data points. The top k eigenvectors of the normalized graph
Laplacian are relaxations of the indicator vectors that assign each node in the graph to one of the
k clusters. Apart from being theoretically well-motivated, spectral clustering has the advantage of
performing well on arbitrary shaped clusters, which is otherwise a shortcoming with several other
clustering algorithms such as the k-means algorithm. Here we briefly outline the spectral clustering
algorithm due to Ng et al. [8]:
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• Construct an n×n positive semi-definite similarity matrix (or kernel) K, where Kij quan-
tifies the similarity between samples i and j.

• Compute the normalized graph Laplacian L = D−1/2KD−1/2, where D is a diagonal
matrix with Dii =

∑
j Kij .

• Let U denote a n× k matrix with columns as the top k eigenvectors of L
• Normalize each row of U to obtain V.
• Run the k-means algorithm to cluster the row vectors of V.
• Assign example i to cluster m if the i-th row of V is assigned to cluster m by the k-means

algorithm.

3 Co-regularized Spectral Clustering
Let X = {x(v)

1 ,x
(v)
2 , . . . ,x

(v)
n } denote the examples in view v and K(v) denote the similarity

or kernel matrix of X in this view. We write the normalized graph Laplacian for this view as:
L(v) = D(v)−1/2

K(v)D(v)−1/2

. The spectral clustering algorithm of Ng et al. [8] solves the follow-
ing optimization problem for the normalized graph Laplacian L(v):

max
U(v)∈Rn×k

tr(U(v)TL(v)U(v)), s.t. U(v)TU(v) = I (1)

where tr denotes the matrix trace. The matrix U(v) can then be used in the algorithm outlined
in Sec. 2 to get the final clustering. Our multi-kernel spectral clustering framework builds on the
standard spectral clustering with a single kernel, by appealing to the co-regularization framework
typically used in the semi-supervised learning literature [4].

Co-regularization essentially works by making the hypotheses learned from different views of the
data agree with each other on unlabeled data [10]. The framework employs two main assumptions
for its success: (a) the true target functions in each view should agree on labels for the unlabeled data
(compatibility), and (b) the views are independent given the class label (conditional independence).
The compatibility assumption is of particular importance since it allows us to shrink the space of
possible target hypotheses by searching only over the compatible functions. Standard PAC-style
analysis [4] shows that this also leads to reductions in the number of examples needed to learn the
target function, since this number depends on the size of the hypothesis class.

For the clustering setting, we propose a co-regularization based approach to make the clustering
hypotheses on different graphs (i.e., views) agree with each other. The effectiveness of spectral
clustering hinges crucially on the construction of the graph Laplacian and the resulting eigenvectors
that reflect the cluster structure in the data. Therefore, we construct an objective function that com-
bines of the graph Laplacians from all the views of the data, and regularize the eigenvectors of each
Laplacian such that the cluster structures resulting from each Laplacian look consistent across all
the views.

Note from Section 2 that the matrix U(v) is the data representation for the subsequent clustering
step, (with i’th row mapping to the original i’th sample). In our proposed objective function, we
encourage the row-wise similarities of U(v) to agree with those of other views. Agreement in
similarities of U(v)’s will more likely produce clusterings consistent with each other across views.

We will work with two-view case for the ease of exposition. We propose the following cost function
as a measure of disagreement between clusterings of two views:

D(U(v),U(w)) =

∥∥∥∥ KU(v)

||KU(v) ||2F
− KU(w)

||KU(w) ||2F

∥∥∥∥2
F

. (2)

KU(v) is the similarity matrix for U(v), and || · ||F denotes the Frobenius norm of the matrix.
The similarity matrices are normalized by their Frobenius norms to make them comparable across
views. We choose linear kernel, i.e. k(xi,xj) = xT

i xj as our similarity measure in Equation 2.
This implies that we have KU(v) = U(v)U(v)T . A linear kernel for U(·) is reasonable here because
the Laplacian for spectral clustering has already taken care of the non-linearities present in the data
(if any) and moreover, as we shall see, we get a nice optimization problem by using linear kernel
for U(·). We also note that ||KU(v) ||2F = k, where k is the number of clusters. Substituting this
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in Equation 2 and ignoring the constant additive and scaling terms that depend on the number of
clusters, we get

D(U(v),U(w)) = −tr(U(v)U(v)TU(w)U(w)T )

We want to minimize the above disagreement between the clusterings of views v and w. Com-
bining this with the spectral clustering objectives of individual views, we get the following joint
maximization problem for two graphs:

max
U(v)∈Rn×k,U(w)∈Rn×k

tr(U(v)TL(v)U(v)) + tr(U(w)TL(w)U(w)) + λtr(U(v)U(v)TU(w)U(w)T )

(3)
s.t. U(v)TU(v) = I, U(w)TU(w) = I

The hyperparameter λ trades-off the spectral clustering objectives and the spectral embedding
(dis)agreement term. The joint optimization problem given by Equation 3 can be solved using al-
ternating maximization w.r.t. U(v) and U(w). For a given U(w), we get the following optimization
problem in U(v):

max
U(v)∈Rn×k

tr{U(v)T (L(v) + λU(w)U(w)T )U(v)}, s.t. U(v)TU(v) = I (4)

This is a standard spectral clustering objective on view v with graph Laplacian L(v)+λU(w)U(w)T .
The solution U(v) is given by the top-k eigenvectors of this modified Laplacian. Since the alternating
maximization can make the algorithm stuck in a local maximum [9], it is important to have a sensible
initialization. We start with the graph Laplacian L(w) of the more informative view and initialize
U(w). The alternating maximization is carried out after this until convergence. For fixed λ and n,
the joint objective can be shown to be bounded from above by a constant. Since the objective is
non-decreasing with the iterations, the algorithm is guaranteed to converge. In practice, we monitor
the convergence by the difference in the value of the objective between consecutive iterations, and
stop when the difference falls below a minimum threshold of ε = 10−4. In all our experiments, we
converge within less than 10 iterations. Note that we can use either U(v) or U(w) in the final k-means
step of the spectral clustering algorithm, depending on which of the views is more informative. If
both views are believed to be equally informative, a column-wise concatenation of the two matrices
could be used. The objective of Eq. 3 can be extended to more than two views by employing co-
regularizers for each pair of the views. We leave the details for a longer version.

4 Experiments
We compare our co-regularization based multiple kernel spectral clustering approach with a number
of baselines. In particular, we compare with:

• Single View: Using the most informative view, i.e., one that achieves the best spectral
clustering performance using a single view of the data.
• Feature Concatenation: Concatenating the features of each view, and then running spec-

tral clustering using the Laplacian derived from this new representation of the data.
• Kernel Combination: Combining different kernels by adding them, and then running

standard spectral clustering on the corresponding Laplacian. As suggested in earlier find-
ings [6], even this seemingly simple approach often leads to near optimal results as com-
pared to more sophisticated approaches.
• CCA based Feature Extraction: Applying CCA for feature fusion from multiple views

of the data [3], and then running spectral clustering using these extracted features.
• Minimizing-Disagreement Spectral Clustering: Our last baseline is the minimizing-

disagreement approach to spectral clustering [7], and is perhaps most closely related to
our co-regularization based approach to spectral clustering.

We report experimental results on one synthetic and two real-world datasets. Our synthetic data
consists of two views and is generated in a manner akin to [13] which first chooses the cluster ci
each sample belongs to, and then generates each of the views x(1)i and x(2)i from a two-component
Gaussian mixture model. These views are combined to form the sample (x

(1)
i , x

(2)
i , ci). Our first

real-world dataset is taken from the handwritten digits (0-9) data from the UCI repository. The
dataset consists of 2000 examples, with view-1 being the 76 Fourier coefficients, and view-2 being
the 216 profile correlations of each example image. Our second real-world dataset is a subset of
the Caltech-101 data from the Multiple Kernel Learning repository [1] from which we chose 450
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examples having 30 underlying clusters. For this data, we chose the bio-inspired “Sparse Localized
Features” as the first view and the 4x4 “Pyramid Histogram Of visual Words” as the second view.
We compare all the approaches on a number of evaluation measures. Here we report: (1) F-score
which is the harmonic mean of precision and recall scores, and (2) Cluster Entropy. We also exper-
imented with the Normalized-Mutual-Information and Rand-Index but do not include those results
due to space limitation. All the results are reported with the best choice of the kernel and the hyper-
parameters. The results are shown in Table 1. As we can see, on all the datasets experimented with,
the co-regularization approach outperforms all the other baselines.

Synthetic Dataset Handwritten Digits Data Caltech-101 Data
F1 Avg. Entropy F1 Avg. Entropy F1 Avg. Entropy

SV 0.69(±0.00) 0.73(±0.00) 0.58(±0.02) 1.20(±0.03) 0.21(±0.01) 2.42(±0.04)
FC 0.68(±0.00) 0.69(±0.00) 0.54(±0.03) 1.28(±0.05) - -
KC 0.70(±0.00) 0.65(±0.00) 0.71(±0.05) 0.86(±0.11) 0.09(±0.01) 3.06(±0.04)

CCA 0.71(±0.00) 0.65(±0.00) 0.63(±0.03) 1.08(±0.07) 0.17(±0.01) 2.63(±0.04)
MD 0.69(±0.00) 0.67(±0.00) 0.69(±0.04) 0.87(±0.09) 0.10(±0.01) 3.00(±0.04)
CS 0.75(±0.00) 0.62(±0.00) 0.72(±0.05) 0.84(±0.12) 0.23(±0.01) 2.34(±0.04)

Table 1: The various approaches: SV: Single View, FC: Feature Concatenation, KC: Kernel Combination,
MD: Minimizing Disagreement spectral clustering, CS: co-regularized spectral clustering. The base k-means
clustering was run with 10 different initializations; mean and standard deviations are reported. Note 1: Since
the Caltech data views are given in form of the kernel matrices, we did not try FC on this. Note 2: The std. dev.
of all algorithms is zero on the synthetic data; different initializations lead to the same clustering in this case.

5 Related Work and Conclusion
A number of clustering algorithms have been proposed in the past to learn with multiple views
of the data. Some of them first extract a set of shared features from the multiple views and then
apply any off-the-shelf clustering algorithm such as k-means on these features. The Canonical
Correlation Analysis [5, 3] (CCA) based approach is an example of this. Alternatively, some other
approaches exploit the multiple views of the data as part of the clustering algorithm itself. For
example, [2] proposed an EM based framework for multi-view clustering in mixture models. Multi-
view clustering algorithms have also been proposed in the framework of spectral clustering [15, 7].
In [11], the information from multiple graphs are fused using Linked Matrix Factorization. [14] uses
maximum margin clustering (MMC) with multiple kernels, and simultaneously finds the best cluster
labeling and the optimal linear combination of base kernels. In contrast, our approach, although uses
multiple kernels, does not require explicitly combining the kernels. Furthermore, each step leads to
a simple eigenvalue problem which is efficiently solvable using state-of-the-art eigensolvers.

References
[1] The UCSD Multiple Kernel Learning Repository. http://mkl.ucsd.edu.
[2] S. Bickel and T. Scheffer. Multi-View Clustering. In ICDM, 2004.
[3] M. B. Blaschko and C. H. Lampert. Correlational Spectral Clustering. In CVPR, 2008.
[4] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
[5] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan. Multi-view Clustering via Canonical Corre-

lation Analysis. In ICML, 2009.
[6] C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combination of kernels. In NIPS, 2009.
[7] V. R. de Sa. Spectral Clustering with two views. In Proceedings of the Workshop on Learning with

Multiple Views, ICML, 2005.
[8] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In NIPS, 2002.
[9] D. Niu, J. G. Dy, and M. I. Jordan. Multiple non-redundant spectral clustering views. In ICML, 2010.

[10] V. Sindhwani, P. Niyogi, and M. Belkin. A Co-regularization approach to semi-supervised learning with
multiple views. In Proceedings of the Workshop on Learning with Multiple Views, ICML, 2005.

[11] W. Tang, Z. Lu, and I. S. Dhillon. Clustering with Multiple Graphs. In ICDM, 2009.
[12] U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 2007.
[13] X. Yi, Y. Xu, and C. Zhang. Multi-view em algorithm for finite mixture models. In ICAPR, Lecture Notes

in Computer Science, Springer-Verlag, 2005.
[14] B. Zhao, J. T. Kwok, and C. Zhang. Multiple Kernel Clustering. In SDM, 2009.
[15] D. Zhou and C. J. C. Burges. Spectral Clustering and Transductive Learning with Multiple Views. In

ICML, 2007.

4


